Study on the mechanism of multidimensional cutting teeth and the influencing factors of rock breaking efficiency

Author:

Chen Lin,Li Debo,He Jingbin,Meng Leifeng,Chi Qifu,Li Gang,Chen Weilin,Zhao Ying,Yi Xianzhong,Xia ChengyuORCID

Abstract

The innovative cutting mechanism of multi-dimensional teeth presents a groundbreaking approach to drill bit design, particularly optimizing drilling efficiency in challenging geological formations such as interlayers and gravel-rich layers within the Changqing Oilfield. Nevertheless, compared to conventional flat-tooth PDC drill bits, several aspects of the cutting mechanism and design parameters for multi-dimensional teeth require further elucidation. This article employs a linear cutting finite element model to establish cutting models for traditional flat teeth and two distinct types of multi-dimensional teeth, designated as Ridge and Benz. It systematically investigates the influence of varying cutting parameters on the effectiveness of rock-crushing within the multi-dimensional tooth-cutting mechanism. This study conducts laboratory-based single-tooth rock-crushing experiments to validate the numerical simulation results. Furthermore, applying principles derived from soil plastic mechanics contrasts the stress states experienced by rocks during the rock-crushing process between multi-dimensional teeth and conventional flat teeth, shedding light on the rock-crushing mechanism employed by multi-dimensional teeth. This research categorizes PDC cutting teeth on the drill bit into two groups: those near the center and those near the outer shoulder. A linear cutting model for teeth positioned near the outer shoulder is developed to analyze the impacts of different rake angles, side clearance angles, and welding errors on the tooth helix angle and the rock-crushing efficiency of the Benz tooth. This comprehensive study is a valuable reference for tailored drill bit design and holds potential for publication in a prestigious scientific journal.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3