Simple Bayesian reconstruction and forecasting of stream water temperature for ecologists—A tool using air temperature, optionally flow, in a time series decomposition approach

Author:

Bal GuillaumeORCID,de Eyto Elvira

Abstract

Mitigating the impacts of global warming on wildlife entails four practical steps. First, we need to study how processes of interest vary with temperature. Second, we need to build good temperature scenarios. Third, processes can be forecast accordingly. Only then can we perform the fourth step, testing mitigating measures. While having good temperature data is essential, this is not straightforward for stream ecologists and managers. Water temperature (WT) data are often short and incomplete and future projections are currently not routinely available. There is a need for generic models which address this data gap with good resolution and current models are partly lacking. Here, we expand a previously published hierarchical Bayesian model that was driven by air temperature (AT) and flow (Q) as a second covariate. The new model can hindcast and forecast WT time series at a daily time step. It also allows a better appraisal of real uncertainties in the warming of water temperatures in rivers compared to the previous version, stemming from its hybrid structure between time series decomposition and regression. This model decomposes all-time series using seasonal sinusoidal periodic signals and time varying means and amplitudes. It then links the contrasted frequency signals of WT (daily and six month) through regressions to that of AT and optionally Q for better resolution. We apply this model to two contrasting case study rivers. For one case study, AT only is available as a covariate. This expanded model further improves the already good fitting and predictive capabilities of its earlier version while additionally highlighting warming uncertainties. The code is available online and can easily be run for other temperate rivers.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference53 articles.

1. Ecological and evolutionary responses to recent climate change;C. Parmesan;Annual Review of Ecology Evolution and Systematics,2006

2. IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056 pp.,. 2022.

3. Physiological ecology meets climate change;F Bozinovic;Ecology and Evolution,2015

4. Effect of water temperature and density of juvenile salmonids on growth of young-of-the-year Atlantic salmon Salmo salar;G Bal;Journal of Fish Biology,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3