A large-scale evaluation of NLP-derived chemical-gene/protein relationships from the scientific literature: Implications for knowledge graph construction

Author:

Jeynes Jonathan C. G.ORCID,Corney Matthew,James Tim

Abstract

One area of active research is the use of natural language processing (NLP) to mine biomedical texts for sets of triples (subject-predicate-object) for knowledge graph (KG) construction. While statistical methods to mine co-occurrences of entities within sentences are relatively robust, accurate relationship extraction is more challenging. Herein, we evaluate the Global Network of Biomedical Relationships (GNBR), a dataset that uses distributional semantics to model relationships between biomedical entities. The focus of our paper is an evaluation of a subset of the GNBR data; the relationships between chemicals and genes/proteins. We use Evotec’s structured ‘Nexus’ database of >2.76M chemical-protein interactions as a ground truth to compare with GNBRs relationships and find a micro-averaged precision-recall area under the curve (AUC) of 0.50 and a micro-averaged receiver operating characteristic (ROC) curve AUC of 0.71 across the relationship classes ‘inhibits’, ‘binding’, ‘agonism’ and ‘antagonism’, when a comparison is made on a sentence-by-sentence basis. We conclude that, even though these micro-average scores are modest, using a high threshold on certain relationship classes like ‘inhibits’ could yield high fidelity triples that are not reported in structured datasets. We discuss how different methods of processing GNBR data, and the factuality of triples could affect the accuracy of NLP data incorporated into knowledge graphs. We provide a GNBR-Nexus(ChEMBL-subset) merged datafile that contains over 20,000 sentences where a protein/gene-chemical co-occur and includes both the GNBR relationship scores as well as the ChEMBL (manually curated) relationships (e.g., ‘agonist’, ‘inhibitor’) —this can be accessed at https://doi.org/10.5281/zenodo.8136752. We envisage this being used to aid curation efforts by the drug discovery community.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference31 articles.

1. Constructing knowledge graphs and their biomedical applications;D. N. Nicholson;Comput. Struct. Biotechnol. J.,2020

2. A literature-based knowledge graph embedding method for identifying drug repurposing opportunities in rare diseases;D. N. Sosa;in Pacific Symposium on Biocomputing,2020

3. Drug Repurposing for COVID-19 via Knowledge Graph Completion;R. Zhang;J. Biomed. Inform.,2020

4. A Review of Biomedical Datasets Relating to Drug Discovery: A Knowledge Graph Perspective;S. Bonner,2021

5. iBKH: The integrative Biomedical Knowledge Hub;C. Su;medRxiv,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3