Go with the flow: Impacts of high and low flow conditions on freshwater mussel assemblages and distribution

Author:

Cushway Kiara C.ORCID,Harris Aubrey E.,Piercy Candice D.,Mitchell Zachary A.ORCID,Schwalb Astrid N.ORCID

Abstract

Understanding the drivers of distribution and assemblage composition of aquatic organisms is an important aspect of management and conservation, especially in freshwater systems that are inordinately facing increasing anthropogenic pressures and decreasing biodiversity. For stream organisms, habitat conditions during high flows may be impossible to measure in the field, but can be an important factor for their distribution, especially for less mobile organisms like freshwater mussels. Hence, the objective of this study was to use a two dimensional HEC-RAS model to simulate hydraulic conditions during high and baseline flows (flows approx. 10–600 x and 0.7 x median daily flows respectively) in a 20 km segment in the San Saba River, Texas in combination with existing mussel survey data from 200 sites (collected every 100m) to 1) examine whether hydraulic conditions differed between areas of increased mussel richness and diversity (referred to as hotspots) and other sites, and 2) understand how well site occupancy and species abundance could be explained by hydraulic conditions occurring under different flow conditions. The results showed that richness and diversity hotspots occurred in deeper areas with lower shear stress, stream power, and Froude number during both high and low flows. Occupancy could be predicted with 67–79% accuracy at the site scale and 60–70% accuracy at the mesohabitat scale (∼20 to 1200 m long). In addition, hydraulic conditions across flow scenarios explained up to 55% of variation in species abundances, but predictions were less successful for species often observed to occupy micro-scale flow refuges such as bedrock crevices. The results indicate that pools may serve as important refuge for all species during both high and low flow events, which may be relatively unique to bedrock-dominated systems. Understanding hydraulic conditions that occur at extreme flows such as these is important given that the frequency and magnitude of such events are increasing due to climate change.

Funder

US Army Corps of Engineers

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3