Speeding genomic island discovery through systematic design of reference database composition

Author:

Yu Steven L.ORCID,Mageeney Catherine M.,Shormin Fatema,Ghaffari Noushin,Williams Kelly P.ORCID

Abstract

Background Genomic islands (GIs) are mobile genetic elements that integrate site-specifically into bacterial chromosomes, bearing genes that affect phenotypes such as pathogenicity and metabolism. GIs typically occur sporadically among related bacterial strains, enabling comparative genomic approaches to GI identification. For a candidate GI in a query genome, the number of reference genomes with a precise deletion of the GI serves as a support value for the GI. Our comparative software for GI identification was slowed by our original use of large reference genome databases (DBs). Here we explore smaller species-focused DBs. Results With increasing DB size, recovery of our reliable prophage GI calls reached a plateau, while recovery of less reliable GI calls (FPs) increased rapidly as DB sizes exceeded ~500 genomes; i.e., overlarge DBs can increase FP rates. Paradoxically, relative to prophages, FPs were both more frequently supported only by genomes outside the species and more frequently supported only by genomes inside the species; this may be due to their generally lower support values. Setting a DB size limit for our SMAll Ranked Tailored (SMART) DB design speeded runtime ~65-fold. Strictly intra-species DBs would tend to lower yields of prophages for small species (with few genomes available); simulations with large species showed that this could be partially overcome by reaching outside the species to closely related taxa, without an FP burden. Employing such taxonomic outreach in DB design generated redundancy in the DB set; as few as 2984 DBs were needed to cover all 47894 prokaryotic species. Conclusions Runtime decreased dramatically with SMART DB design, with only minor losses of prophages. We also describe potential utility in other comparative genomics projects.

Funder

Sandia National Laboratories

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3