Impact of mobile connectivity on students’ wellbeing: Detecting learners’ depression using machine learning algorithms

Author:

Siraji Muntequa Imtiaz,Rahman Ahnaf Akif,Nishat Mirza MuntasirORCID,Al Mamun Md AbdullahORCID,Faisal Fahim,Khalid Lamim Ibtisam,Ahmed AshikORCID

Abstract

Depression is a psychological state of mind that often influences a person in an unfavorable manner. While it can occur in people of all ages, students are especially vulnerable to it throughout their academic careers. Beginning in 2020, the COVID-19 epidemic caused major problems in people’s lives by driving them into quarantine and forcing them to be connected continually with mobile devices, such that mobile connectivity became the new norm during the pandemic and beyond. This situation is further accelerated for students as universities move towards a blended learning mode. In these circumstances, monitoring student mental health in terms of mobile and Internet connectivity is crucial for their wellbeing. This study focuses on students attending an International University of Bangladesh to investigate their mental health due to their continual use of mobile devices (e.g., smartphones, tablets, laptops etc.). A cross-sectional survey method was employed to collect data from 444 participants. Following the exploratory data analysis, eight machine learning (ML) algorithms were used to develop an automated normal-to-extreme severe depression identification and classification system. When the automated detection was incorporated with feature selection such as Chi-square test and Recursive Feature Elimination (RFE), about 3 to 5% increase in accuracy was observed by the method. Similarly, a 5 to 15% increase in accuracy has been observed when a feature extraction method such as Principal Component Analysis (PCA) was performed. Also, the SparsePCA feature extraction technique in combination with the CatBoost classifier showed the best results in terms of accuracy, F1-score, and ROC-AUC. The data analysis revealed no sign of depression in about 44% of the total participants. About 25% of students showed mild-to-moderate and 31% of students showed severe-to-extreme signs of depression. The results suggest that ML models, incorporating a proper feature engineering method can serve adequately in multi-stage depression detection among the students. This model might be utilized in other disciplines for detecting early signs of depression among people.

Funder

Islamic University of Technology (IUT), Bangladesh

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference110 articles.

1. Depression and cardiovascular disorders.;MA Whooley;Annual Review of Clinical Psychology.,2013

2. Prevalence of stress, anxiety and depression due to examination in Bangladeshi youths: A pilot study.;AR Arusha;Child Youth Serv Rev.,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling and Simulation of Sustainable Solar PV: A Ubiquitous Computing Approach;2024 3rd International Conference on Applied Artificial Intelligence and Computing (ICAAIC);2024-06-05

2. A Multi-Model Ensemble Approach for Proactive Student Mental Health Assessment;2024 IEEE International Conference for Women in Innovation, Technology & Entrepreneurship (ICWITE);2024-02-16

3. Research on Common Mental Disorders in Bangladesh;Mental Health in Bangladesh;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3