Abstract
Cardiac MRI is a crucial tool for assessing congenital heart disease (CHD). However, its application remains challenging in young children when performed at 3T. The aim of this retrospective single center study was to compare a non-contrast free-breathing 2D CINE T1-weighted TFE-sequence with compressed sensing (FB 2D CINE CS T1-TFE) with 3D imaging for diagnostic accuracy of CHD, image quality, and vessel diameter measurements in sedated young children. FB 2D CINE CS T1-TFE was compared with a 3D non-contrast whole-heart sequence (3D WH) and 3D contrast-enhanced MR angiography (3D CE-MRA) at 3T in 37 CHD patients (20♂, 1.5±1.4 years). Two radiologists independently assessed image quality, type of CHD, and diagnostic confidence. Diameters and measures of contrast and sharpness of the aorta and pulmonary vessels were determined. A non-parametric multi-factorial approach was used to estimate diagnostic accuracy for the diagnosis of CHD. Linear mixed models were calculated to compare contrast and vessel sharpness. Krippendorff’s alpha was determined to quantify vessel diameter agreement. FB 2D CINE CS T1-TFE was rated superior regarding image quality, diagnostic confidence, and diagnostic sensitivity for both intra- and extracardiac pathologies compared to 3D WH and 3D CE-MRA (all p<0.05). FB 2D CINE CS T1-TFE showed superior contrast and vessel sharpness (p<0.001) resulting in the highest proportion of measurable vessels (740/740; 100%), compared to 3D WH (530/620; 85.5%) and 3D CE-MRA (540/560; 96.4%). Regarding vessel diameter measurements, FB 2D CINE CS T1-TFE revealed the closest inter-reader agreement (Krippendorff’s alpha: 0.94–0.96; 3D WH: 0.78–0.94; 3D CE-MRA: 0.76–0.93). FB 2D CINE CS T1-TFE demonstrates robustness at 3T and delivers high-quality diagnostic results to assess CHD in sedated young children. Its ability to function without contrast injection and respiratory compensation enhances ease of use and could encourage widespread adoption in clinical practice.
Publisher
Public Library of Science (PLoS)