Bayesian and non-bayesian inference for logistic-exponential distribution using improved adaptive type-II progressively censored data

Author:

Dutta SubhankarORCID,Alqifari Hana N.ORCID,Almohaimeed Amani

Abstract

Improved adaptive type-II progressive censoring schemes (IAT-II PCS) are increasingly being used to estimate parameters and reliability characteristics of lifetime distributions, leading to more accurate and reliable estimates. The logistic exponential distribution (LED), a flexible distribution with five hazard rate forms, is employed in several fields, including lifetime, financial, and environmental data. This research aims to enhance the accuracy and reliability estimation capabilities for the logistic exponential distribution under IAT-II PCS. By developing novel statistical inference methods, we can better understand the behavior of failure times, allow for more accurate decision-making, and improve the overall reliability of the model. In this research, we consider both classical and Bayesian techniques. The classical technique involves constructing maximum likelihood estimators of the model parameters and their asymptotic covariance matrix, followed by estimating the distribution’s reliability using survival and hazard functions. The delta approach is used to create estimated confidence intervals for the model parameters. In the Bayesian technique, prior information about the LED parameters is used to estimate the posterior distribution of the parameters, which is derived using Bayes’ theorem. The model’s reliability is determined by computing the posterior predictive distribution of the survival or hazard functions. Extensive simulation studies and real-data applications assess the effectiveness of the proposed methods and evaluate their performance against existing methods.

Funder

Deanship of Scientific Research, Qassim University

Publisher

Public Library of Science (PLoS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3