Controlling toxic and harmful gas in blasting with an inhibitor

Author:

Yi HaibaoORCID,Zhang Xiliang,Yang Haitao,Li Longfu,Wang Yu,Zhan Sibo

Abstract

In engineering blasting, while efficiently breaking rocks with explosives, a large amount of toxic and harmful gases are generated, which not only pollutes the production environment but also easily leads to explosion smoke poisoning accidents. It must be highly valued by engineering technicians and management personnel. To effectively control the production of harmful gases during explosive blasting, an environmentally friendly and efficient harmful gas inhibitor has been developed, and its mechanism of action has been analyzed and revealed. Through model and on-site experiments, the appropriate addition ratio and charging structure scheme were determined, and good control effects were achieved. The research results indicate that the environment in which explosives are used has a significant impact on the composition of harmful gases produced during blasting. CO, NO, and NO2 are mainly produced in natural air environments, while NH3, CO, and NO are mainly produced in underground blasting environments. As the proportion of inhibitors added increases (2%, 4%, 6%), the decrease in the concentration of harmful gases during blasting first increases and then decreases. Compared with the control experiment, the total reduction rate of harmful gas concentration is 39.23%, 68.20%, and 59.69%, respectively, and the best control effect is achieved when 4% is added. When using the developed inhibitor adding device for the full hole addition scheme, the control effect of harmful gas concentration in blasting is the best, and the decrease in harmful gas concentration reaches 62.79%~84.73% at a distance of 30m~120m. The use of harmful gas inhibitors for blasting combined with other control measures can significantly improve the blasting operation environment, enhance the safety level of production operations, and have good promotion and application value.

Funder

the National Key R&D Program of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference26 articles.

1. Abdollahisharif J, Bakhtavar E, Noorizadeh H. Monitoring and assessment of pollutants resulting from bench-blasting operations. 2016.

2. On the prediction of toxic fumes from underground blasting operations and dilution ventilation. Conventional and numerical models;S Torno;Tunnelling and underground space technology,2020

3. Experimental research of lowering blasting dust and toxic gases by hydraulic action;Yang Haitao;Metal Mine,2016

4. Experimental study on toxic dust and gas control in blasting at metal mines;Liu Guili;Mining Research and Development,2011

5. Influence of airflow velocity on exhaust time of blasting fume in deep open-pit mines;Ding Cui;Mining Safety & Environmental Protection,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impacts of Artisanal Mining on Air Quality and One Health;The Handbook of Environmental Chemistry;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3