Impact of vaccine measures on the transmission dynamics of COVID-19

Author:

Liu HuaORCID,Han Xiaotao,Lin Xiaofen,Zhu Xinjie,Wei Yumei

Abstract

In many nations, efforts to prevent and control COVID-19 have been significantly impeded by the SARS-CoV-2 virus ongoing mutation. The Omicron strain, a more recent and prevalent strain, has had more significant detrimental effects in countries worldwide. To investigate the impact of the Omicron BA.2 strain on vaccine efficacy, we proposed a model with vaccination and immunological decline in this research. Then, we fitted our model based on the number of daily new instances reported by the government in Jilin and Shanghai, China. We estimated the effective reproduction number Re = 4.71 for the Jilin and Re = 3.32 for Shanghai. Additionally, we do sensitivity analysis to identify the critical factors affecting the effective reproduction number Re. It was found that vaccination rate, effectiveness rate, and declining rate had a significant effect on Re. Further, we investigate the relevant parameter thresholds that make Re lower than unity. Finally, rich numerical experiments were then carried out. We observed that even when vaccine efficiency was not high, increasing vaccination rates had a significant effect on early disease transmission, that limiting social distance was the most economical and rational measure to control the spread of disease, and that for a short period, reducing immune decline was not significant in curbing disease transmission.

Funder

Science and Technology Program of Gansu Province

The Research Fund for Humanities and Social Sciences of the Ministry of Education

Fundamental Research Funds for the Central Universities

The Leading Talents Project of State Ethnic Affairs Commission of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3