Inferring interactions in multispecies communities: The cryptocurrency market case

Author:

Brigatti E.ORCID,Rocha Grecco V.,Hernández A. R.,Bertella M. A.

Abstract

We introduce a general framework for empirically detecting interactions in communities of entities characterized by different features. This approach is inspired by ideas and methods coming from ecology and finance and is applied to a large dataset extracted from the cryptocurrency market. The inter-species interaction network is constructed using a similarity measure based on the log-growth rate of the capitalizations of the cryptocurrency market. The detected relevant interactions are only of the cooperative type, and the network presents a well-defined clustered structure, with two practically disjointed communities. The first one is made up of highly capitalized cryptocurrencies that are tightly connected, and the second one is made up of small-cap cryptocurrencies that are loosely linked. This approach based on the log-growth rate, instead of the conventional price returns, seems to enhance the discriminative potential of the network representation, highlighting a modular structure with compact communities and a rich hierarchy that can be ascribed to different functional groups. In fact, inside the community of the more capitalized coins, we can distinguish between clusters composed of some of the more popular first-generation cryptocurrencies, and clusters made up of second-generation cryptocurrencies. Alternatively, we construct the network of directed interactions by using the partial correlations of the log-growth rate. This network displays the important centrality of Bitcoin, discloses a core cluster containing a branch with the most capitalized first-generation cryptocurrencies, and emphasizes interesting correspondences between the detected direct pair interactions and specific features of the related currencies. As risk strongly depends on the interaction structure of the cryptocurrency system, these results can be useful for assisting in hedging risks. The inferred network topology suggests fewer probable widespread contagions. Moreover, as the riskier coins do not strongly interact with the others, it is more difficult that they can drive the market to more fragile states.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference28 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Correlations versus noise in the NFT market;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3