SCREENER: Streamlined collaborative learning of NER and RE model for discovering gene-disease relations

Author:

Park MinjunORCID,Jeong Chan Ung,Baik Young Sang,Lee Dong Geon,Park Jeong U.,Koo Hee Jung,Kim Tae YongORCID

Abstract

Finding relations between genes and diseases is essential in developing a clinical diagnosis, treatment, and drug design for diseases. One successful approach for mining the literature is the document-based relation extraction method. Despite recent advances in document-level extraction of entity-entity, there remains a difficulty in understanding the relations between distant words in a document. To overcome the above limitations, we propose an AI-based text-mining model that learns the document-level relations between genes and diseases using an attention mechanism. Furthermore, we show that including a direct edge (DE) and indirect edges between genetic targets and diseases when training improves the model’s performance. Such relation edges can be visualized as graphs, enhancing the interpretability of the model. For the performance, we achieved an F1-score of 0.875, outperforming state-of-the-art document-level extraction models. In summary, the SCREENER identifies biological connections between target genes and diseases with superior performance by leveraging direct and indirect target-disease relations. Furthermore, we developed a web service platform named SCREENER (Streamlined CollaboRativE lEarning of NEr and Re), which extracts the gene-disease relations from the biomedical literature in real-time. We believe this interactive platform will be useful for users to uncover unknown gene-disease relations in the world of fast-paced literature publications, with sufficient interpretation supported by graph visualizations. The interactive website is available at: https://ican.standigm.com.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference41 articles.

1. Identification and Analysis of Co-Occurrence Networks with NetCutter;H Müller;PLoS ONE,2008

2. DigSee: disease gene search engine with evidence sentences (version cancer);J Kim;Nucleic Acids Research,2013

3. LGscore: A method to identify disease-related genes using biological literature and Google data;J Kim;Journal of Biomedical Informatics,2015

4. DISEASES: Text mining and data integration of disease–gene associations;S Pletscher-Frankild;Methods,2015

5. eDGAR: a database of disease-gene associations with annotated relationships among genes;G Babbi;BMC genomics,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3