Abstract
The IoT offered an enormous number of services with the help of multiple applications so it faces various security-related problems and also heavy malicious attacks. Initially, the IoT data are gathered from the standard dataset as Message Queuing Telemetry Transport (MQTT) set. Further, the collected data are undergone the pre-processing stage, which is accomplished by using data cleaning and data transformation. The resultant processed data is given into two models named (i) Autoencoder with Deep Belief Network (DBN), in which the optimal features are selected from Autoencoder with the aid of Modified Archimedes Optimization Algorithm (MAOA). Further, the optimal features are subjected to the AL-DBN model, where the first classified outcomes are obtained with the parameter optimization of MAOA. Similarly, (ii) Long Short-Term Memory (LSTM) with DBN, in this model, the optimal features are chosen from LSTM with the aid of MAOA. Consequently, the optimal features are subjected into the AL-DBN model, where the second classified outcomes are acquired. Finally, the average score is estimated by two outcomes to provide the final classified result. Thus, the findings reveal that the suggested system achieves outstanding results to detect the attack significantly.
Publisher
Public Library of Science (PLoS)
Reference35 articles.
1. Applying big data based deep learning system to intrusion detection;W. Zhong;Big Data Mining and Analytics,2020
2. Topology Verification Enabled Intrusion Detection for In-Vehicle CAN-FD Networks,";T Yu;IEEE Communications Letters,2020
3. AdaBoost-Based Algorithm for Network Intrusion Detection;W. Hu;IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),,2008
4. An Agile Approach to Identify Single and Hybrid Normalization for Enhancing Machine Learning-Based Network Intrusion Detection;M. A. Siddiqi;IEEE Access,2021
5. Airborne LiDAR Assisted Obstacle Recognition and Intrusion Detection Towards Unmanned Aerial Vehicle: Architecture, Modeling and Evaluation;Y. Miao;IEEE Transactions on Intelligent Transportation Systems,2021