Advanced load frequency control of microgrid using a bat algorithm supported by a balloon effect identifier in the presence of photovoltaic power source

Author:

Ewias Ahmed M.,Hakmi Sultan H.,Mohamed Tarek HassanORCID,Mahmoud Mohamed MetwallyORCID,Eid AhmadORCID,Abdelaziz Almoataz Y.,Dahab Yasser Ahmed

Abstract

Due to the unpredictability of the majority of green energy sources (GESs), particularly in microgrids (μGs), frequency deviations are unavoidable. These factors include solar irradiance, wind disturbances, and parametric uncertainty, all of which have a substantial impact on the system’s frequency. An adaptive load frequency control (LFC) method for power systems is suggested in this paper to mitigate the aforementioned issues. For engineering challenges, soft computing methods like the bat algorithm (BA), where it proves its effectiveness in different applications, consistently produce positive outcomes, so it is used to address the LFC issue. For online gain tuning, an integral controller using an artificial BA is utilized, and this control method is supported by a modification known as the balloon effect (BE) identifier. Stability and robustness of analysis of the suggested BA+BE scheme is investigated. The system with the proposed adaptive frequency controller is evaluated in the case of step/random load demand. In addition, high penetrations of photovoltaic (PV) sources are considered. The standard integral controller and Jaya+BE, two more optimization techniques, have been compared with the suggested BA+BE strategy. According to the results of the MATLAB simulation, the suggested technique (BA+BE) has a significant advantage over other techniques in terms of maintaining frequency stability in the presence of step/random disturbances and PV source. The suggested method successfully keeps the frequency steady over I and Jaya+BE by 61.5% and 31.25%, respectively. In order to validate the MATLAB simulation results, real-time simulation tests are given utilizing a PC and a QUARC pid_e data acquisition card.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3