Application of MLP neural network to predict X-ray spectrum from tube voltage, filter material, and filter thickness used in medical imaging systems

Author:

He Jie,Zhanjian Cai,Zheng Jiadi,Shentong Mao,Daoud Mohammad Sh.ORCID,Hongyu Zhang,Eftekhari-Zadeh EhsanORCID,Guoqiang Xu

Abstract

The X-ray energy spectrum is crucial for image quality and dosage assessment in mammography, radiography, fluoroscopy, and CT which are frequently used for the diagnosis of many diseases including but not limited to patients with cardiovascular and cerebrovascular diseases. X-ray tubes have an electron filament (cathode), a tungsten/rubidium target (anode) oriented at an angle, and a metal filter (aluminum, beryllium, etc.) that may be placed in front of an exit window. When cathode electrons meet the anode, they generate X-rays with varied energies, creating a spectrum from zero to the electrons’ greatest energy. In general, the energy spectrum of X-rays depends on the electron beam’s energy (tube voltage), target angle, material, filter thickness, etc. Thus, each imaging system’s X-ray energy spectrum is unique to its tubes. The primary goal of the current study is to develop a clever method for quickly estimating the X-ray energy spectrum for a variety of tube voltages, filter materials, and filter thickness using a small number of unique spectra. In this investigation, two distinct filters made of beryllium and aluminum with thicknesses of 0.4, 0.8, 1.2, 1.6, and 2 mm were employed to obtain certain limited X-ray spectra for tube voltages of 20, 30, 40, 50, 60, 80, 100, 130, and 150 kV. The three inputs of 150 Multilayer Perceptron (MLP) neural networks were tube voltage, filter type, and filter thickness to forecast the X-ray spectra point by point. After training, the MLP neural networks could predict the X-ray spectra for tubes with voltages between 20 and 150 kV and two distinct filters made of aluminum and beryllium with thicknesses between 0 and 2 mm. The presented methodology can be used as a suitable, fast, accurate and reliable alternative method for predicting X-ray spectrum in medical applications. Although a technique was put out in this work for a particular system that was the subject of Monte Carlo simulations, it may be applied to any genuine system.

Funder

German Research Foundation

Open Access Publication Fund of the Thueringer Universitaets- und Landesbibliothek Jena

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3