Topology optimization on metamaterial cells for replacement possibility in non-pneumatic tire and the capability of 3D-printing

Author:

Dezianian ShokouhORCID,Azadi MohammadORCID,Razavi Seyed Mohammad JavadORCID

Abstract

One of the applications of mechanical metamaterials is in car tires, as a non-pneumatic tire (NPT). Therefore, to find a suitable cell to replace the pneumatic part of the tire, three different solution methods were used, including topology optimization of the cubic unit cell, cylindrical unit cell, and fatigue testing cylindrical sample (FTCS). First, to find the mechanical properties, a tensile test was conducted for materials made of polylactic acid (PLA) and then, the optimization was done based on the weight and overhang control for the possibility of manufacturing with 3D printers, as constraints, besides, the objective of minimum compliance. In the optimization of the cubic unit cell, the sample with a minimum remaining weight of 35% was selected as the optimal sample. However, for the cylindrical unit cell, a sample with a weight limit of 20% was the most optimal state. In contrast, in the FTCS optimization, a specimen with lower remaining weight equal to 60% of the initial weight was selected. After obtaining the answer, five cells in the FTCS and two mentioned cells were evaluated under compressive testing. The samples were also subjected to bending fatigue loadings. The results demonstrated that cellular structures with 15% of lower weight than the optimized samples had the same fatigue lifetime. In the compressive test, the line slope of the specimens with cellular structures in the elastic region of the force-displacement diagram was reduced by 37%, compared to the completely solid samples. However, the weight of these samples decreased by 59%. Furthermore, the fracture surface was also investigated by field-emission scanning electron microscopy. It was observed that a weak connection between the layers was the cause of failure.

Funder

Iran National Science Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference104 articles.

1. Cellular Solids Structure and Properties;L. J. Gibson;Cambridge University Press,2014

2. Harnessing out-of-plane deformation to design 3D architected lattice metamaterials with tunable Poisson’s ratio;T. Li;Scientific Reports. vol,2017

3. Architected cellular materials: A review on their mechanical properties towards fatigue-tolerant design and fabrication.;M. Benedetti;Materials Science and Engineering R: Reports,2021

4. A review of additive manufacturing of metamaterials and developing trends.;J. Fan;Materials Today,2021

5. Flexible cellular solid spokes of a non-pneumatic tire.;J. Ju;Composite Structures. vol,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3