CD11c is not required by microglia to convey neuroprotection after prion infection

Author:

Carroll James A.ORCID,Striebel James F.,Baune Chase,Chesebro Bruce,Race Brent

Abstract

Prion diseases are caused by the misfolding of a normal host protein that leads to gliosis, neuroinflammation, neurodegeneration, and death. Microglia have been shown to be critical for neuroprotection during prion infection of the central nervous system (CNS), and their presence extends survival in mice. How microglia impart these benefits to the infected host are unknown. Previous transcriptomics and bioinformatics studies suggested that signaling through the heterodimeric integrin receptor CD11c/CD18, expressed by microglia in the brain, might be important to microglial function during prion disease. Herein, we intracerebrally challenged CD11c-/- mice with prion strain RML and compared them to similarly infected C57BL/6 mice as controls. We initially assessed changes in the brain that are associated with disease such as astrogliosis, microgliosis, prion accumulation, and survival. Targeted qRT-PCR arrays were used to determine alterations in transcription in mice in response to prion infection. We demonstrate that expression of Itgax (CD11c) and Itgb2 (CD18) increases in the CNS in correlation with advancing prion infection. Gliosis, neuropathology, prion deposition, and disease progression in prion infected CD11c deficient mice were comparable to infected C57BL/6 mice. Additionally, both CD11c deficient and C57BL/6 prion-infected mouse cohorts had a similar consortium of inflammatory- and phagocytosis-associated genes that increased as disease progressed to clinical stages. Ingenuity Pathway Analysis of upregulated genes in infected C57BL/6 mice suggested numerous cell-surface transmembrane receptors signal through Spleen Tyrosine Kinase, a potential key regulator of phagocytosis and innate immune activation in the prion infected brain. Ultimately, the deletion of CD11c did not influence prion pathogenesis in mice and CD11c signaling is not involved in the neuroprotection provided by microglia, but our analysis identified a conspicuous phagocytosis pathway in the CNS of infected mice that appeared to be activated during prion pathogenesis.

Funder

Division of Intramural Research, National Institute of Allergy and Infectious Diseases

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3