Rat hair-follicle-associated pluripotent (HAP) stem cells can differentiate into atrial or ventricular cardiomyocytes in culture controlled by specific supplementation

Author:

Takaoka NanakoORCID,Yamane Michiko,Hasegawa Ayami,Obara Koya,Shirai Kyoumi,Aki Ryoichi,Hatakeyama Hiroyasu,Hamada Yuko,Arakawa Nobuko,Tanaka Manabu,Hoffman Robert M.,Amoh Yasuyuki

Abstract

There has been only limited success to differentiate adult stem cells into cardiomyocyte subtypes. In the present study, we have successfully induced beating atrial and ventricular cardiomyocytes from rat hair-follicle-associated pluripotent (HAP) stem cells, which are adult stem cells located in the bulge area. HAP stem cells differentiated into atrial cardiomyocytes in culture with the combination of isoproterenol, activin A, bone morphogenetic protein 4 (BMP4), basic fibroblast growth factor (bFGF), and cyclosporine A (CSA). HAP stem cells differentiated into ventricular cardiomyocytes in culture with the combination of activin A, BMP4, bFGF, inhibitor of Wnt production-4 (IWP4), and vascular endothelial growth factor (VEGF). Differentiated atrial cardiomyocytes were specifically stained for anti-myosin light chain 2a (MLC2a) antibody. Ventricular cardiomyocytes were specially stained for anti-myosin light chain 2v (MLC2v) antibody. Quantitative Polymerase Chain Reaction (qPCR) showed significant expression of MLC2a in atrial cardiomyocytes and MLC2v in ventricular cardiomyocytes. Both differentiated atrial and ventricular cardiomyocytes showed characteristic waveforms in Ca2+ imaging. Differentiated atrial and ventricular cardiomyocytes formed long myocardial fibers and beat as a functional syncytium, having a structure similar to adult cardiomyocytes. The present results demonstrated that it is possible to induce cardiomyocyte subtypes, atrial and ventricular cardiomyocytes, from HAP stem cells.

Funder

Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan

the Terumo Life Science Foundation

Parents’ Association Grant of Kitasato University, School of Medicine

a research grant for young medical doctors and healthcare professionals from SRL, Inc.

a grant from Kitasato University Graduate School of Medical Sciences

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3