Olfactory system-inspired electronic nose system using numerous low-cost homogenous and hetrogenous sensors

Author:

Lee Sang Woo,Kim Byeong Hee,Seo Young Ho

Abstract

This paper presents an electronic nose system inspired by the biological olfactory system. When comparing the human olfactory system to that of a dog, it’s worth noting that dogs have 30 times more olfactory receptors and three times as many types of olfactory receptors. This implies that the number of olfactory receptors could be a more important parameter for classifying chemical compounds than the number of receptor types. Instead of using expensive precision sensors, the proposed electronic nose system relies on numerous low-cost homogeneous and heterogeneous sensors with poor cross-interference characteristics due to their low gas selectivity. Even if the same type of sensor shows a slightly different output for the same chemical compound, this variation becomes a unique signal for the target gas being measured. The electronic nose system comprises 30 sensors, the e-nose had 6 differing sensors with 5 replicates of each type. The characteristics of the electronic nose system are evaluated using three different volatile alcoholic compounds, more than 99% of which are the same. Liquid samples are supplied to the sensor chamber for 60 seconds using an air bubbler, followed by a 60-second cleaning of the chamber. Sensor signals are acquired at a sampling rate of 100 Hz. In this experimental study, the effects of data preprocessing methods and the number of sensors of the same type are investigated. By increasing the number of sensors of the same type, classification accuracy exceeds 99%, regardless of the deep learning model. The proposed electronic nose system, based on low-cost sensors, demonstrates similar results to commercial expensive electronic nose systems.

Funder

National Research Foundation of Korea

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference39 articles.

1. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose;K Persaud;Nature,1982

2. A brief history of electronic noses. Sensors and Actuators B;JW Gardner;Chemical,1994

3. Classification of milk by means of an electronic nose and SVM neural network. Sensors and Actuators B;K Brudzewski;Chemical,2004

4. Identification of mint scents using a QCM based e-nose.;S Okur;Chemosensors.,2021

5. A CNN-Based E-Nose Using Time Series Features for Food Freshness Classification;X Ren;IEEE Sensors Journal,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3