Abstract
Geological evidence, such as tsunami deposits, is crucial for studying the largest rupture zone of the Kuril Trench in Hokkaido, Japan, due to its poor historical record. Although 17th-century tsunami deposits are widely distributed across Hokkaido, the presence of multiple wave sources during that period, including the collapse of Mt. Komagatake, complicates the correlation with their wave sources. Understanding the regional distribution of these tsunami deposits can provide valuable data to estimate the magnitude of megathrust earthquakes in the Kuril Trench. The northern part of Hidaka, Hokkaido, where tsunamis from multiple wave sources are expected to overlap, is distant from the Kuril Trench. To clarify the depositional history of tsunami deposits in such distal areas, evaluating the influence of the depositional environments on the event layer preservation becomes even more critical. We conducted field surveys in Kabari, located in the northern Hidaka region, identifying three sand layers from the 10th to the 17th century and two layers dating beyond 2.3 thousand years ago. The depositional ages of most sand layers potentially correlate with tsunami deposits resulting from the Kuril Trench earthquakes. Utilizing reconstructed paleo-sea level data, we estimated that most sand layers reached approximately 2 m in height. However, it is noteworthy that the latest sand layer from the 17th century exhibited an unusual distribution, more than 3 m in height. This suggests a different wave source as the Mt. Komagatake collapse. The discovery of multiple sand layers and their distributions is crucial to constraining the maximum magnitude of giant earthquakes in the Kuril Trench and understanding the volcanic tsunami events related to Mt. Komagatake.
Funder
Japan Society for the Promotion of Science
Publisher
Public Library of Science (PLoS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献