Enhancement of in vivo targeting properties of ErbB2 aptamer by chemical modification

Author:

Park Jun Young,Cho Ye Lim,Chae Ju Ri,Lee Jung Hwan,Kang Won JunORCID

Abstract

Aptamers have great potential for diagnostics and therapeutics due to high specificity to target molecules. However, studies have shown that aptamers are rapidly distributed and excreted from blood circulation due to nuclease degradation. To overcome this issue and to improve in vivo pharmacokinetic properties, inverted deoxythymidine (idT) incorporation at the end of aptamer has been developed. The goal of this study was to evaluate the biological characterization of 3’-idT modified ErbB2 aptamer and compare with that of unmodified aptamer via nuclear imaging. ErbB2-idT aptamer was labeled with radioisotope F-18 by base-pair hybridization using complementary oligonucleotide platform. The hyErbB2-idT aptamer demonstrated specific binding to targets in a ErbB2 expressing SK-BR-3 and KPL4 cells in vitro. Ex vivo biodistribution and in vivo imaging was studied in KPL4 xenograft bearing Balb/c nu/nu mice. 18F-hyErbB2-idT aptamer had significantly higher retention in the tumor (1.36 ± 0.17%ID/g) than unmodified 18F-hyErbB2 (0.98 ± 0.19%ID/g) or scrambled aptamer (0.79 ± 0.26% ID/g) at 1 h post-injection. 18F-hyErbB2-idT aptamer exhibited relatively slow blood clearance and delayed excretion by the renal and hepatobiliary system than 18F-hyErbB2 aptamer. In vivo PET imaging study showed that 18F-hyErbB2-idT aptamer had more stronger PET signals on KPL4 tumor than 18F-hyErbB2 aptamer. The results of this study demonstrate that attachment of idT at 3’-end of aptamer have a substantial influence on biological stability and extended blood circulation led to enhanced tumor uptake of aptamer.

Funder

Korea Health Industry Development Institute

National Research Foundation funded by Korea government

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference53 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3