Abstract
Background
Recently, we developed a chest compression device that can move the chest compression position without interruption during CPR and be remotely controlled to minimize rescuer exposure to infectious diseases. The purpose of this study was to compare its performance with conventional mechanical CPR device in a mannequin and a swine model of cardiac arrest.
Materials and methods
A prototype of a remote-controlled automatic chest compression device (ROSCER) that can change the chest compression position without interruption during CPR was developed, and its performance was compared with LUCAS 3 in a mannequin and a swine model of cardiac arrest. In a swine model of cardiac arrest, 16 male pigs were randomly assigned into the two groups, ROSCER CPR (n = 8) and LUCAS 3 CPR (n = 8), respectively. During 5 minutes of CPR, hemodynamic parameters including aortic pressure, right atrial pressure, coronary perfusion pressure, common carotid blood flow, and end-tidal carbon dioxide partial pressure were measured.
Results
In the compression performance test using a mannequin, compression depth, compression time, decompression time, and plateau time were almost equal between ROSCER and LUCAS 3. In a swine model of cardiac arrest, coronary perfusion pressure showed no difference between the two groups (p = 0.409). Systolic aortic pressure and carotid blood flow were higher in the LUCAS 3 group than in the ROSCER group during 5 minutes of CPR (p < 0.001, p = 0.008, respectively). End-tidal CO2 level of the ROSCER group was initially lower than that of the LUCAS 3 group, but was higher over time (p = 0.022). A Kaplan-Meier survival analysis for ROSC also showed no difference between the two groups (p = 0.46).
Conclusion
The prototype of a remote-controlled automated chest compression device can move the chest compression position without interruption during CPR. In a mannequin and a swine model of cardiac arrest, the device showed no inferior performance to a conventional mechanical CPR device.
Funder
Ministry of Health and Welfare
Publisher
Public Library of Science (PLoS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献