A rollover safety margin-based approach for quantifying the tractor-semitrailers’ emergency lane-changing response on expressway curves

Author:

Lv WenzhenORCID,Xu Jinliang,Gao Chao

Abstract

In emergency scenarios, lane changing can provide a considerable advantage over braking by aiding in the prevention of rear-end collisions. However, executing lane changes on horizontal curves might lead to rollover collisions. This study proposes a systematic methodology for quantifying the rollover safety margin during lane-changing maneuvers by encompassing the complex characteristics of vehicle-road interactions. Specifically, an enhanced six-degree-of-freedom vehicle dynamics model was developed for a tractor-semitrailer and integrates road superelevation. Using this model, the rollover safety margin reduction rate (fS) was calculated. The fS represents the ratio of the difference between the lateral load transfer ratio margins under both reference state and emergency lane change conditions to the lateral load transfer ratio margin in the reference state. The reference state corresponds to vehicles maintaining 80 km·h-1 on a 270 m radius curve, while the emergency condition is defined as lane change durations of less than 4 seconds. The results reveal that emergency lane change maneuvers and roadway alignment significantly affect rollover safety margin. Shorter lane change duration, higher speed, and smaller radius worsen the rollover safety margin; these effects are further amplified when the lane change direction is opposite to the curve’s bending direction. When the tractor-semitrailer performs a lane change at 60 km·h-1 within a 4-second duration on a 600 m radius curve, the fS exceeds 100%, indicating an imminent rollover. Consequently, this study contributes valuable evidence to the development of more reliable and secure lane-change strategies.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference65 articles.

1. Modeling and Simulating on Vehicle’s Safety Distance of Collision Avoidance Through Emergent Lane-Changing;C Liu;Machinery Design & Manufacture,2016

2. Research on Vehicle Active Collision Avoidance System Based on the Coordinated Actions of Braking and Steering;W Yuan;China Journal of Highway and Transport,2019

3. Modelling and Active Safe Control of Heavy Tractor Semi-Trailer;T Zhu;Conf 2009 2nd Int ICTA. Changsha, China: IEEE,2009

4. Crash Avoidance Potential of Four Large Truck Technologies;JS Jermakian;Accident Analysis & Prevention,2012

5. Active Steering Control Based on Preview Theory for Articulated Heavy Vehicles;J Tian;PLOS ONE,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3