Investigation on hydrodynamic lubrication effect of micro groove seal in pharmaceutical kettle

Author:

Zhou Yinghua,Cheng Xing,Sun Fengming,Gong RanORCID

Abstract

To improve the lubrication conditions of the seal in the pharmaceutical kettles, a specific shape groove with micrometer level on the sealing end face is set up to fully utilize the fluid dynamic pressure effect under given working conditions. A numerical model is developed to solve the pressure distribution in the micro groove, where any groove shape can be used. The numerical form of the model is derived using the principle of mass conservation without considering the film thickness derivative term, and the coordinate transformation is introduced to adapt to the curved shape of the groove. The cavitation phenomenon is taken into account in the flow field of the seal, and the JFO cavitation model is introduced to modify the Reynolds equation. The diversity of groove shapes is considered, and the node adsorption method is adopted to approximate the groove shape. The model is established based on the principle of mass conservation, which can adapt to any different groove shapes and has a strong scalability. By mathematical modeling and solving, the performances of the micro groove seal under different groove shapes are analyzed, providing a basis for the micro groove design of seal in pharmaceutical kettles.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3