Hamstrings load bearing in different contraction types and intensities: A shear-wave and B-mode ultrasonographic study

Author:

Evangelidis Pavlos E.ORCID,Shan XiyaoORCID,Otsuka Shun,Yang Chi,Yamagishi Takaki,Kawakami YasuoORCID

Abstract

The main aim was to examine the load bearing of individual hamstring muscles in different contraction types and intensities, through local stiffness measurement by shear wave elastography (SWE). A secondary aim was to examine the relationship between the SWE stiffness measure and hamstrings morphology. Ten healthy males (age 22.1±4.1 years; height 173.7±5.9 cm; body mass 68.6±12.4 kg; mean ± SD) performed knee flexions on an isokinetic dynamometer at different intensities (20–70%MVC, random order) in three separate, randomized conditions: isometric (ISO), concentric (CON) and eccentric (ECC). SWE was used to measure muscle shear wave velocity (SWV) in biceps femoris long head (BFlh), semitendinosus (ST) and semimembranosus (SM) during contraction. Muscle anatomical cross-sectional area (ACSA) was measured with magnetic resonance imaging and muscle architecture with B-mode ultrasonography. Muscle SWV increased linearly with contraction intensity, but at a varying rate among muscles and contraction types. ST exhibited greater SWV than BFlh and SM in all contraction types, however, there was an upward shift in the SM SWV–torque relationship in ECC compared to ISO and CON. Strong negative correlations were found between peak ISO SWV and ST ACSA (r = -0.81, p = 0.005) and BFlh pennation angle (r = -0.75, p = 0.012). These results suggest that ST has a primary role in hamstrings load bearing in all contraction types, likely due to its morphology; however, there is evidence of increased contribution from SM in eccentric muscle actions.

Funder

Japan Society for the Promotion of Science

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3