The influence of random number generation in dissipative particle dynamics simulations using a cryptographic hash function

Author:

Okada Kiyoshiro,Brumby Paul E.ORCID,Yasuoka Kenji

Abstract

The tiny encryption algorithm (TEA) is widely used when performing dissipative particle dynamics (DPD) calculations in parallel, usually on distributed memory systems. In this research, we reduced the computational cost of the TEA hash function and investigated the influence of the quality of the random numbers generated on the results of DPD calculations. It has already been established that the randomness, or quality, of the random numbers depend on the number of processes from internal functions such as SHIFT, XOR and ADD, which are commonly referred to as “rounds”. Surprisingly, if we choose seed numbers from high entropy sources, with a minimum number of rounds, the quality of the random numbers generated is sufficient to successfully perform accurate DPD simulations. Although it is well known that using a minimal number of rounds is insufficient for generating high-quality random numbers, the combination of selecting good seed numbers and the robustness of DPD simulations means that we can reduce the random number generation cost without reducing the accuracy of the simulation results.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3