Finite element analysis of cutting balloon expansion in a calcified artery model of circular angle 180°: Effects of balloon-to-diameter ratio and number of blades facing calcification on potential calcification fracturing and perforation reduction

Author:

Zhu Xiaodong,Umezu Mitsuo,Iwasaki KiyotakaORCID

Abstract

Calcified artery lesions cause stent under-expansion and increase the risk of in-stent restenosis and stent thrombosis. Cutting balloons facilitate the fracturing of calcification prior to stent implantation, although vessel dissection and perforation are potential issues. In clinical practice, calcifications having maximum calcium angles ≤ 180° are rarely fractured during conventional balloon angioplasty. We hypothesize that the lesion/device diameter ratio and the number of blades facing a non-circular calcified lesion may be crucial for fracturing the calcification while avoiding vessel injury. The geometries of the cutting balloons were constructed and their finite-element models were generated by folding and wrapping the balloon model. Numerical simulations were performed for balloons with five different diameters and two types of blade directions in a 180° calcification model. The calcification expansion ability was distinctly higher when two blades faced the calcification than when one blade did. Moreover, when two blades faced the calcification model, larger maximum principal stresses were generated in the calcification even when using undersized balloons with diameters reduced by 0.25 or 0.5 mm from the reference diameter, when compared with the case where one blade faced the calcified model and a balloon of diameter equal to the reference diameter was used. When two blades faced the calcification, smaller stresses were generated in the artery adjacent to the calcification; further, the maximum stress generated in the artery model adjacent to the calcification under the rated pressure of 12 atm when employing undersized balloons was smaller than that when only one blade faced the calcification and when lesion-identical balloon diameters were used under a nominal pressure of 6 atm. Our study suggested that undersized balloons of diameters 0.25 or 0.5 mm less than the reference diameter might be effective in not only expanding the calcified lesion but also reducing the risk of dissection.

Funder

Research on Regulatory Science of Pharmaceuticals and Medical Devices from Japan Agency for Medical Research and Development, AMED

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3