Observing spontaneous, accelerated substrate binding in molecular dynamics simulations of glutamate transporters

Author:

Wang JialiORCID,Li PeifanORCID,Yu XiaozhenORCID,Grewer ChristofORCID

Abstract

Glutamate transporters are essential for removing the neurotransmitter glutamate from the synaptic cleft. Glutamate transport across the membrane is associated with elevator-like structural changes of the transport domain. These structural changes require initial binding of the organic substrate to the transporter. Studying the binding pathway of ligands to their protein binding sites using molecular dynamics (MD) simulations requires micro-second level simulation times. Here, we used three methods to accelerate aspartate binding to the glutamate transporter homologue Gltph and to investigate the binding pathway. 1) Two methods using user-defined forces to prevent the substrate from diffusing too far from the binding site. 2) Conventional MD simulations using very high substrate concentrations in the 0.1 M range. The final, substrate bound states from these methods are comparable to the binding pose observed in crystallographic studies, although they show more flexibility in the side chain carboxylate function. We also captured an intermediate on the binding pathway, where conserved residues D390 and D394 stabilize the aspartate molecule. Finally, we investigated glutamate binding to the mammalian glutamate transporter, excitatory amino acid transporter 1 (EAAT1), for which a crystal structure is known, but not in the glutamate-bound state. Overall, the results obtained in this study reveal new insights into the pathway of substrate binding to glutamate transporters, highlighting intermediates on the binding pathway and flexible conformational states of the side chain, which most likely become locked in once the hairpin loop 2 closes to occlude the substrate.

Funder

National Institute of General Medical Sciences

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3