Molecular investigation of tick-borne pathogens in ticks removed from tick-bitten humans in the southwestern region of the Republic of Korea

Author:

Bang Mi Seon,Kim Choon-Mee,Pyun Sang-Hyun,Kim Dong-MinORCID,Yun Na Ra

Abstract

In this study, we investigated the presence of tick-borne pathogens in ticks removed from tick-bitten humans in the southwestern provinces of the Republic of Korea (ROK). We identified 33 ticks from three tick species, namely Amblyomma testudinarium (60.6%), Haemaphysalis longicornis (27.3%), and Ixodes nipponensis (12.1%) in order of occurrence via morphology and 16S rDNA-targeting polymerase chain reaction (PCR). Tick-borne pathogens were detected in 16 ticks using pathogen-specific PCR. From the results, 12 ticks (36.4%) tested positive for spotted fever group (SFG) Rickettsia: Rickettsia monacensis (1/12), R. tamurae (8/12), and Candidatus Rickettsia jingxinensis (3/12). Three ticks (9.1%) were positive for Anaplasma phagocytophilum. In addition, three ticks (9.1%) tested positive for Babesia gibsoni (1/3) and B. microti (2/3). In conclusion, we identified three tick species; the most common species was A. testudinarium, followed by H. longicornis and I. nipponensis. SFG Rickettsia, A. phagocytophilum, and Babesia spp. were the most frequently detected pathogens in ticks removed from tick-bitten humans. To our knowledge, this is the first report of R. tamurae and Ca. R. jingxinensis detection in Korea. The present results will contribute to the understanding of tick-borne infections in animals and humans in the ROK.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference38 articles.

1. Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases;J de la Fuente;Front Cell Infect Microbiol,2017

2. Current Status of Tick-Borne Diseases in South Korea;JH Im;Vector-Borne Zoonotic Dis,2019

3. Genotypic Identification of Rickettsiae and Estimation of Intraspecies Sequence Divergence for Portions of Two Rickettsial Genes;RL Regnery;J Bacteriol,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3