Abstract
Infrasonic signals measured before an earthquake carry information about the size and development speed of the source fracture, the stress at the fracture site and the elastic properties of the geologic medium. The infrasonic signal has a stable time scale, and compared with other precursors, infrasound has a unique sensitivity to earthquake disasters. However, to date, there has been no relevant theoretical research on the mechanism of infrasonic anomalies, and information on the development of fracture sources cannot be obtained from these characteristics, which makes the application of this anomaly in earthquake prediction challenging. In this study, we obtained the characteristics of short-term and impending infrasonic anomalies based on the infrasound data of more than 100 strong earthquakes. With a range of elastic medium models with a large number of fractures, we completed the theoretical simulation of the formation process of infrasonic precursors during the formation of the main fractures, analyzed the physical evolution of acoustic signals when cracks are generated, and quantitatively described the stages of large fracture formation caused by the initiation and propagation of seismic cracks. Specifically, this study revealed the causes of various and complex forms of infrasonic precursors near the critical point and the causes of the time- and space-dependent characteristics of these precursors, such as a noticeable attenuation of the pulse number, a low frequency and a large amplitude, which verified the effectiveness of infrasonic anomalies as strong earthquake precursors.
Funder
Key scientific and technological projects in Henan Province--Research and application of efficient change detection for synthetic aperture radar (SAR) images based on Parallel Computing
Publisher
Public Library of Science (PLoS)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献