Statistical methods versus machine learning techniques for donor-recipient matching in liver transplantation

Author:

Guijo-Rubio DavidORCID,Briceño Javier,Gutiérrez Pedro Antonio,Ayllón Maria Dolores,Ciria Rubén,Hervás-Martínez César

Abstract

Donor-Recipient (D-R) matching is one of the main challenges to be fulfilled nowadays. Due to the increasing number of recipients and the small amount of donors in liver transplantation, the allocation method is crucial. In this paper, to establish a fair comparison, the United Network for Organ Sharing database was used with 4 different end-points (3 months, and 1, 2 and 5 years), with a total of 39, 189 D-R pairs and 28 donor and recipient variables. Modelling techniques were divided into two groups: 1) classical statistical methods, including Logistic Regression (LR) and Naïve Bayes (NB), and 2) standard machine learning techniques, including Multilayer Perceptron (MLP), Random Forest (RF), Gradient Boosting (GB) or Support Vector Machines (SVM), among others. The methods were compared with standard scores, MELD, SOFT and BAR. For the 5-years end-point, LR (AUC = 0.654) outperformed several machine learning techniques, such as MLP (AUC = 0.599), GB (AUC = 0.600), SVM (AUC = 0.624) or RF (AUC = 0.644), among others. Moreover, LR also outperformed standard scores. The same pattern was reproduced for the others 3 end-points. Complex machine learning methods were not able to improve the performance of liver allocation, probably due to the implicit limitations associated to the collection process of the database.

Funder

Ministry of Economy and Competitiveness

Consejería de Salud y Familia de la Junta de Andalucía

Consejería de Economía, Conocimiento, Empresas y Universidad de la Junta de Andalucía

Spanish Ministry of Education and Science, FPU Predoctoral Program

Fundación Pública Andaluza Progreso y Salud

Fundación de Investigación Biomédica de Córdoba

Consejo de Investigación, Universidad Nacional de Salta

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference31 articles.

1. The model for end-stage liver disease (MELD);PS Kamath;Hepatology,2007

2. Survival outcomes following liver transplantation (SOFT) score: a novel method to predict patient survival following liver transplantation;A Rana;American Journal of Transplantation,2008

3. Are there better guidelines for allocation in liver transplantation?: A novel score targeting justice and utility in the model for end-stage liver disease era;P Dutkowski;Annals of surgery,2011

4. Donor-recipient matching: myths and realities;J Briceño;Journal of hepatology,2013

5. Organ Procurement and Transplantation Network (OPTN). United Network for Organ Sharing (UNOS); 2020. Available from: https://www.unos.org/.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3