The flavin monooxygenase Bs3 triggers cell death in plants, impairs growth in yeast and produces H2O2 in vitro

Author:

Krönauer ChristinaORCID,Lahaye ThomasORCID

Abstract

The pepper resistance gene Bs3 triggers a hypersensitive response (HR) upon transcriptional activation by the corresponding effector protein AvrBs3 from the bacterial pathogen Xanthomonas. Expression of Bs3 in yeast inhibited proliferation, demonstrating that Bs3 function is not restricted to the plant kingdom. The Bs3 sequence shows striking similarity to flavin monooxygenases (FMOs), an FAD- and NADPH-containing enzyme class that is known for the oxygenation of a wide range of substrates and their potential to produce H2O2. Since H2O2 is a hallmark metabolite in plant immunity, we analyzed the role of H2O2 during Bs3 HR. We purified recombinant Bs3 protein from E. coli and confirmed the FMO function of Bs3 with FAD binding and NADPH oxidase activity in vitro. Translational fusion of Bs3 to the redox reporter roGFP2 indicated that the Bs3-dependent HR induces an increase of the intracellular oxidation state in planta. To test if the NADPH oxidation and putative H2O2 production of Bs3 is sufficient to induce HR, we adapted previous studies which have uncovered mutations in the NADPH binding site of FMOs that result in higher NADPH oxidase activity. In vitro studies demonstrated that recombinant Bs3S211A protein has twofold higher NADPH oxidase activity than wildtype Bs3. Translational fusions to roGFP2 showed that Bs3S211A also increased the intracellular oxidation state in planta. Interestingly, while the mutant derivative Bs3S211A had an increase in NADPH oxidase capacity, it did not trigger HR in planta, ultimately revealing that H2O2 produced by Bs3 on its own is not sufficient to trigger HR.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3