Machine Learning augmented docking studies of aminothioureas at the SARS-CoV-2—ACE2 interface

Author:

Rola Monika,Krassowski Jakub,Górska Julita,Grobelna Anna,Płonka Wojciech,Paneth Agata,Paneth PiotrORCID

Abstract

The current pandemic outbreak clearly indicated the urgent need for tools allowing fast predictions of bioactivity of a large number of compounds, either available or at least synthesizable. In the computational chemistry toolbox, several such tools are available, with the main ones being docking and structure-activity relationship modeling either by classical linear QSAR or Machine Learning techniques. In this contribution, we focus on the comparison of the results obtained using different docking protocols on the example of the search for bioactivity of compounds containing N-N-C(S)-N scaffold at the S-protein of SARS-CoV-2 virus with ACE2 human receptor interface. Based on over 1800 structures in the training set we have predicted binding properties of the complete set of nearly 600000 structures from the same class using the Machine Learning Random Forest Regressor approach.

Funder

Fundacja na rzecz Nauki Polskiej

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference53 articles.

1. Three emerging coronaviruses in two decades. The story of SARS MERS and now COVID-19;J Guarner;Am J Clin Pathol,2020

2. Repurposing therapeutics for COVID-19: supercomputer-based docking to the SARS CoV-2 viral spike protein and viral spike protein-human ACE2 interface;M Smith;ChemRxiv,2020

3. SARS-CoV-2 pandemic and research gap: understanding SARS-CoV-2 interaction with ACE2 receptor and implications for therapy;KP Datta;Theranostics,2020

4. Docking and QSAR of Aminothioureas at the SARS-CoV-2 S-Protein–Human ACE2 Receptor Interface;W Płonka;Molecules,2020

5. Random Forests;L Breiman;Machine Learning,2001

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of Interpretable Machine Learning Models for COVID-19 Drug Target Docking Scores Prediction;2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2023-12-05

2. Effective Surrogate Models for Docking Scores Prediction of Candidate Drug Molecules on SARS-CoV-2 Protein Targets;2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2023-12-05

3. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2;Chemical Reviews;2022-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3