Artificial Intelligence inspired methods for the allocation of common goods and services

Author:

Samothrakis SpyridonORCID

Abstract

The debate over the optimal way of allocating societal surplus (i.e. products and services) has been raging, in one form or another, practically forever; following the collapse of the Soviet Union in 1991, the market has taken the lead vs the public sector to do this. Working within the tradition of Marx, Leontief, Beer and Cockshott, we propose what we deem an automated planning system that aims to operate on unit level (e.g., factories and citizens), rather than on aggregate demand and sectors. We explain why it is both a viable and desirable alternative to current market conditions and position our solution within current societal structures. Our experiments show that it would be trivial to plan for up to 50K industrial goods and 5K final goods in commodity hardware. Our approach bridges the gap between traditional planning methods and modern AI planning, opening up venues for further research.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3