Transcriptome profiling reveals new insights into the roles of neuronal nitric oxide synthase on macrophage polarization towards classically activated phenotype

Author:

Chang PinganORCID,Gao Hao,Sun Quan,He Xiaohong,Huang Feifei

Abstract

In response to various stimuli, naïve macrophages usually polarize to M1 (classically activated) or M2 (alternatively activated) cells with distinct biological functions. Neuronal nitric oxide synthase (NOS1) is involved in M1 macrophage polarization at an early stage. Here, we show for the first time that NOS1 is dispensable for M2 macrophage polarization for the first time. Further, differentially expressed genes (DEGs) regulated by NOS1 signaling in M1-polarized macrophages stimulated with lipopolysaccharide (LPS) were characterized by transcriptome analysis of wild-type (WT) and NOS1 knockout mouse macrophages. Thousands of affected genes were detected 2 h post LPS challenge, and this wide-ranging effect became greater with a longer stimulation time (8 h post LPS). NOS1 deficiency caused dysregulated expression of hundreds of LPS-responsive genes. Most DEGs were enriched in biological processes related to transcription and regulation of the immune and inflammatory response. At 2 h post-LPS, the toll-like receptor (TLR) signaling pathway, cytokine–cytokine receptor interaction, and NOD-like receptor signaling pathway were the major pathways affected, whereas the main pathways affected at 8 h post-LPS were Th1 and Th2 cell differentiation, FoxO, and AMPK signaling pathway. Identified DEGs were validated by real-time quantitative PCR and interacted in a complicated signaling pathway network. Collectively, our data show that NOS1 is dispensable for M2 macrophage polarization and reveal novel insights in the role of NOS1 signaling at different stages of M1 macrophage polarization through distinct TLR4 plasma membrane-localized and endosome-internalized signaling pathways.

Funder

National Nature Science Foundation of China

Natural Science Foundation of Chongqing

Chongqing Municipal Human Resources and Social Security Bureau

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3