Dementia risks identified by vocal features via telephone conversations: A novel machine learning prediction model

Author:

Shimoda AkihiroORCID,Li Yue,Hayashi Hana,Kondo Naoki

Abstract

Due to difficulty in early diagnosis of Alzheimer’s disease (AD) related to cost and differentiated capability, it is necessary to identify low-cost, accessible, and reliable tools for identifying AD risk in the preclinical stage. We hypothesized that cognitive ability, as expressed in the vocal features in daily conversation, is associated with AD progression. Thus, we have developed a novel machine learning prediction model to identify AD risk by using the rich voice data collected from daily conversations, and evaluated its predictive performance in comparison with a classification method based on the Japanese version of the Telephone Interview for Cognitive Status (TICS-J). We used 1,465 audio data files from 99 Healthy controls (HC) and 151 audio data files recorded from 24 AD patients derived from a dementia prevention program conducted by Hachioji City, Tokyo, between March and May 2020. After extracting vocal features from each audio file, we developed machine-learning models based on extreme gradient boosting (XGBoost), random forest (RF), and logistic regression (LR), using each audio file as one observation. We evaluated the predictive performance of the developed models by describing the receiver operating characteristic (ROC) curve, calculating the areas under the curve (AUCs), sensitivity, and specificity. Further, we conducted classifications by considering each participant as one observation, computing the average of their audio files’ predictive value, and making comparisons with the predictive performance of the TICS-J based questionnaire. Of 1,616 audio files in total, 1,308 (81.0%) were randomly allocated to the training data and 308 (19.1%) to the validation data. For audio file-based prediction, the AUCs for XGboost, RF, and LR were 0.863 (95% confidence interval [CI]: 0.794–0.931), 0.882 (95% CI: 0.840–0.924), and 0.893 (95%CI: 0.832–0.954), respectively. For participant-based prediction, the AUC for XGboost, RF, LR, and TICS-J were 1.000 (95%CI: 1.000–1.000), 1.000 (95%CI: 1.000–1.000), 0.972 (95%CI: 0.918–1.000) and 0.917 (95%CI: 0.918–1.000), respectively. There was difference in predictive accuracy of XGBoost and TICS-J with almost approached significance (p = 0.065). Our novel prediction model using the vocal features of daily conversations demonstrated the potential to be useful for the AD risk assessment.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference47 articles.

1. Psychological predictors of participation in screening for cognitive impairment among community-dwelling older adults;K Harada;Geriatr Gerontol Int,2017

2. Knowledge of documented dementia diagnosis and treatment in veterans and their caregivers;A Bradford;Am J Alzheimers Dis Other Demen,2011

3. Timely diagnosis for alzheimer’s disease: A literature review on benefits and challenges;B Duboisa;J Alzheimer’s Dis,2015

4. Psychosocial Factors That Shape Patient and Carer Experiences of Dementia Diagnosis and Treatment: A Systematic Review of Qualitative Studies;F Bunn;PLoS Med,2012

5. Diagnosing dementia: Perspectives of primary care physicians;L Boise;Gerontologist,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3