Colonoscopy polyp detection and classification: Dataset creation and comparative evaluations

Author:

Li KaidongORCID,Fathan Mohammad I.,Patel Krushi,Zhang TianxiaoORCID,Zhong Cuncong,Bansal Ajay,Rastogi Amit,Wang Jean S.,Wang Guanghui

Abstract

Colorectal cancer (CRC) is one of the most common types of cancer with a high mortality rate. Colonoscopy is the preferred procedure for CRC screening and has proven to be effective in reducing CRC mortality. Thus, a reliable computer-aided polyp detection and classification system can significantly increase the effectiveness of colonoscopy. In this paper, we create an endoscopic dataset collected from various sources and annotate the ground truth of polyp location and classification results with the help of experienced gastroenterologists. The dataset can serve as a benchmark platform to train and evaluate the machine learning models for polyp classification. We have also compared the performance of eight state-of-the-art deep learning-based object detection models. The results demonstrate that deep CNN models are promising in CRC screening. This work can serve as a baseline for future research in polyp detection and classification.

Funder

National Institute of Health

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference78 articles.

1. Colorectal cancer and nutrition;K Thanikachalam;Nutrients,2019

2. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors;FA Haggar;Clinics in colon and rectal surgery,2009

3. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries;F Bray;CA: a cancer journal for clinicians,2018

4. Colorectal cancer development and advances in screening;K Simon;Clinical interventions in aging,2016

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3