Macrophage migration inhibitory factor (MIF) inhibitor 4-IPP downregulates stemness phenotype and mesenchymal trans-differentiation after irradiation in glioblastoma multiforme

Author:

Lee Shin HeonORCID,Kwon Hyung Joon,Park SaewhanORCID,Kim Chan Il,Ryu Haseo,Kim Sung Soo,Park Jong Bae,Kwon Jeong TaikORCID

Abstract

Radiation therapy is among the most essential treatment methods for glioblastoma multiforme (GBM). Radio-resistance and cancer stem cell properties can cause therapeutic resistance, cancer heterogeneity, and poor prognoses in association with GBM. Furthermore, the GBM subtype transition from proneural to the most malignant mesenchymal subtype after radiation therapy also accounts for high resistance to conventional treatments. Here, we demonstrate that the inhibition of macrophage migration inhibitory factor (MIF) and D-dopachrome tautomerase (DDT) by 4-iodo-6-phenylpyrimidine (4-IPP), a dual inhibitor targeting MIF and DDT, downregulates stemness phenotype, intracellular signaling cascades, mesenchymal trans-differentiation, and induces apoptosis in proneural glioma stem cells (GSCs). In an analysis of The Cancer Genome Atlas, high MIF and DDT expression were associated with poor prognosis. GSC growth was effectively inhibited by 4-IPP in a time- and dose-dependent manner, and 4-IPP combined with radiation therapy led to significantly reduced proliferation compared with radiation therapy alone. The expression of stemness factors, such as Olig2 and SOX2, and the expression of pAKT, indicating PI3K signaling pathway activation, were decreased in association with both 4-IPP monotherapy and combination treatment. The expression of mesenchymal markers, TGM2 and NF-κB, and expression of pERK (indicating MAPK signaling pathway activation) increased in association with radiation therapy alone but not with 4-IPP monotherapy and combination therapy. In addition, the combination of 4-IPP and radiation therapy significantly induced apoptosis compared to the monotherapy of 4-IPP or radiation. In vivo results demonstrated a significant tumor-suppressing effect of 4-IPP when combined with radiation therapy. Collectively, our results showed that the targeted inhibition of MIF and DDT has the potential to strengthen current clinical strategies by enhancing the anticancer effects of radiation therapy.

Funder

National Cancer Center

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3