MiRNA-1202 promotes the TGF-β1-induced proliferation, differentiation and collagen production of cardiac fibroblasts by targeting nNOS

Author:

Xiao JingwenORCID,Zhang Yan,Tang Yuan,Dai Hengfen,OuYang Yu,Li Chuanchuan,Yu Meiqin

Abstract

Background Atrial fibrillation (AF) is a clinically common arrhythmia that affects human health. Myocardial fibrosis serves as an important contributor to AF. Recently, miRNA-1202 have been reported to be up-regulated in AF. However, the role of miRNA-1202 and its mechanism in myocardial fibrosis remain unclear. Methods Human cardiac fibroblasts (HCFs) were used to construct a fibrosis model by TGF-β1 induction. The expression of miR-1202 was measured by qRT-PCR. Cell proliferation was assessed by CCK-8 assays. Protein expression levels were measured by western blot. Collagen accumulation was measured by ELISA. The relationship between miR-1202 and nNOS was investigated by luciferase reporter assays. Results MiR-1202 expression was obviously increased in HCFs and was both time- and dose-independent. MiR-1202 could increase the proliferation and collagen I, collagen III, and α-SMA levels with or without TGF-β1. MiR-1202 could also increase TGF-β1 and p-Smad2/3 protein levels in comparison to the control group. However, they were obviously decreased after inhibitor transfection. MiR-1202 targets nNOS for negative regulation of HCFs fibrosis by decreasing cell differentiation, collagen deposition and the activity of the TGF-β1/Smad2/3 pathway. Co-transfection of miR-1202 inhibitor and siRNA of nNOS inhibited nNOS protein expression, thereby enhancing the HCFs proliferation. Furthermore, co-transfection of the miR-1202 inhibitor and siRNA of nNOS significantly promoted collagen I, collagen III, TGF-β1, Smad2/3 and α-SMA protein expression and Smad2/3 protein phosphorylation. These findings suggested that miR-1202 promotes HCFs transformation to a pro-fibrotic phenotype by targeting nNOS through activating the TGF-β1/Smad2/3 pathway.

Funder

the Natural Science Foundation of Fujian province

the Foundation of Fuzhou Administration of Science and Technology

the Foundation of Fuzhou Health and Family Planning Research Talents Cultivate Youth Research Projects

Fuzhou key specialty project

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference40 articles.

1. Atrial remodeling and atrial fibrillation: recent advances and translational perspectives;S Nattel;J Am Coll Cardiol,2014

2. Molecular and cellular mechanisms of atrial fibrosis in atrial fibrillation.;S Nattel;JACC Clin Electrophysiol,2017

3. J. Myocardial Fibrosis Related to Occurrence and Maintenance of Atrial Fibrillation;XU Xing XQ;Advances in Cardiovascular Diseases,2009

4. Renin–angiotensin system and myocardial fibrosis in hypertension: regulation of the myocardial collagen matrix;CG Brilla;Eur Heart J,1993

5. The Origin of Fibroblasts and Mechanism of Cardiac Fibrosis;G Krenning;Journal of cellular physiology,2010

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3