Distributed hybrid-indexing of compressed pan-genomes for scalable and fast sequence alignment

Author:

Maarala Altti IlariORCID,Arasalo Ossi,Valenzuela Daniel,Mäkinen Veli,Heljanko Keijo

Abstract

Computational pan-genomics utilizes information from multiple individual genomes in large-scale comparative analysis. Genetic variation between case-controls, ethnic groups, or species can be discovered thoroughly using pan-genomes of such subpopulations. Whole-genome sequencing (WGS) data volumes are growing rapidly, making genomic data compression and indexing methods very important. Despite current space-efficient repetitive sequence compression and indexing methods, the deployed compression methods are often sequential, computationally time-consuming, and do not provide efficient sequence alignment performance on vast collections of genomes such as pan-genomes. For performing rapid analytics with the ever-growing genomics data, data compression and indexing methods have to exploit distributed and parallel computing more efficiently. Instead of strict genome data compression methods, we will focus on the efficient construction of a compressed index for pan-genomes. Compressed hybrid-index enables fast sequence alignments to several genomes at once while shrinking the index size significantly compared to traditional indexes. We propose a scalable distributed compressed hybrid-indexing method for large genomic data sets enabling pan-genome-based sequence search and read alignment capabilities. We show the scalability of our tool, DHPGIndex, by executing experiments in a distributed Apache Spark-based computing cluster comprising 448 cores distributed over 26 nodes. The experiments have been performed both with human and bacterial genomes. DHPGIndex built a BLAST index for n = 250 human pan-genome with an 870:1 compression ratio (CR) in 342 minutes and a Bowtie2 index with 157:1 CR in 397 minutes. For n = 1,000 human pan-genome, the BLAST index was built in 1520 minutes with 532:1 CR and the Bowtie2 index in 1938 minutes with 76:1 CR. Bowtie2 aligned 14.6 GB of paired-end reads to the compressed (n = 1,000) index in 31.7 minutes on a single node. Compressing n = 13,375,031 (488 GB) GenBank database to BLAST index resulted in CR of 62:1 in 575 minutes. BLASTing 189,864 Crispr-Cas9 gRNA target sequences (23 MB in total) to the compressed index of human pan-genome (n = 1,000) finished in 45 minutes on a single node. 30 MB mixed bacterial sequences were (n = 599) were blasted to the compressed index of 488 GB GenBank database (n = 13,375,031) in 26 minutes on 25 nodes. 78 MB mixed sequences (n = 4,167) were blasted to the compressed index of 18 GB E. coli sequence database (n = 745,409) in 5.4 minutes on a single node.

Funder

Academy of Finland

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference41 articles.

1. National Human Genome Research Institute. The Cost of Sequencing a Human Genome. 2020. Available from: https://www.genome.gov/sequencingcosts/

2. Advancing Personalized Medicine Through the Application of Whole Exome Sequencing and Big Data Analytics;P Suwinski;Frontiers in genetics

3. Clinical Metagenomic Next-Generation Sequencing for Pathogen Detection;W Gu;Annual review of pathology

4. Genomic big data hitting the storage bottleneck;L Papageorgiou;EMBnetjournal,2018

5. Computational pan-genomics: Status, promises and challenges;T Marcshall;The Computational Pan-Genomics Consortium Brief Bioinform,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3