Genomic data from NSCLC tumors reveals correlation between SHP-2 activity and PD-L1 expression and suggests synergy in combining SHP-2 and PD-1/PD-L1 inhibitors

Author:

Toral Keller J.,Wuenschel Mark A.,Black Esther P.ORCID

Abstract

The identification of novel therapies, new strategies for combination of therapies, and repurposing of drugs approved for other indications are all important for continued progress in the fight against lung cancers. Antibodies that target immune checkpoints can unmask an immunologically hot tumor from the immune system of a patient. However, despite accounts of significant tumor regression resulting from these medications, most patients do not respond. In this study, we sought to use protein expression and RNA sequencing data from The Cancer Genome Atlas and two smaller studies deposited onto the Gene Expression Omnibus (GEO) to advance our hypothesis that inhibition of SHP-2, a tyrosine phosphatase, will improve the activity of immune checkpoint inhibitors (ICI) that target PD-1 or PD-L1 in lung cancers. We first collected protein expression data from The Cancer Proteome Atlas (TCPA) to study the association of SHP-2 and PD-L1 expression in lung adenocarcinomas. RNA sequencing data was collected from the same subjects through the NCI Genetic Data Commons and evaluated for expression of the PTPN11 (SHP-2) and CD274 (PD-L1) genes. We then analyzed RNA sequencing data from a series of melanoma patients who were either treatment naïve or resistant to ICI therapy. PTPN11 and CD274 expression was compared between groups. Finally, we analyzed gene expression and drug response data collected from 21 non-small cell lung cancer (NSCLC) patients for PTPN11 and CD274 expression. From the three studies, we hypothesize that the activity of SHP-2, rather than the expression, likely controls the expression of PD-L1 as only a weak relationship between PTPN11 and CD274 expression in either lung adenocarcinomas or melanomas was observed. Lastly, the expression of CD274, not PTPN11, correlates with response to ICI in NSCLC.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference25 articles.

1. American Cancer Society. Cancer Facts & Figures 2020 [Internet]. [cited 2020Jul05]. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2020.html

2. Keytruda (Pembrolizumab): First PD-1 Inhibitor Approved for Previously Treated Unresectable or Metastatic Melanoma;L Raedler;AH&DB,2015

3. FDA Approval Summary: Nivolumab for the Treatment of Metastatic Non-Small Cell Lung Cancer With Progression On or After Platinum-Based Chemotherapy;D Kazandjian;Oncologist,2016

4. Center for Drug Evaluation and Research. FDA expands pembrolizumab indication for first-line treatment of NSCLC [Internet]. U.S. Food and Drug Administration. FDA; [cited 2020Jul8]. https://www.fda.gov/drugs/fda-expands-pembrolizumab-indication-first-line-treatment-nsclc-tps-1

5. Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer;SJ Antonia;N Engl J Med,2017

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3