Biogeochemical dynamics and microbial community development under sulfate- and iron-reducing conditions based on electron shuttle amendment

Author:

Flynn Theodore M.,Antonopoulos Dionysios A.,Skinner Kelly A.,Brulc Jennifer M.,Johnston Eric,Boyanov Maxim I.ORCID,Kwon Man Jae,Kemner Kenneth M.,O’Loughlin Edward J.ORCID

Abstract

Iron reduction and sulfate reduction are two of the major biogeochemical processes that occur in anoxic sediments. Microbes that catalyze these reactions are therefore some of the most abundant organisms in the subsurface, and some of the most important. Due to the variety of mechanisms that microbes employ to derive energy from these reactions, including the use of soluble electron shuttles, the dynamics between iron- and sulfate-reducing populations under changing biogeochemical conditions still elude complete characterization. Here, we amended experimental bioreactors comprised of freshwater aquifer sediment with ferric iron, sulfate, acetate, and the model electron shuttle AQDS (9,10-anthraquinone-2,6-disulfonate) and monitored both the changing redox conditions as well as changes in the microbial community over time. The addition of the electron shuttle AQDS did increase the initial rate of FeIII reduction; however, it had little effect on the composition of the microbial community. Our results show that in both AQDS- and AQDS+ systems there was an initial dominance of organisms classified as Geobacter (a genus of dissimilatory FeIII-reducing bacteria), after which sequences classified as Desulfosporosinus (a genus of dissimilatory sulfate-reducing bacteria) came to dominate both experimental systems. Furthermore, most of the ferric iron reduction occurred under this later, ostensibly “sulfate-reducing” phase of the experiment. This calls into question the usefulness of classifying subsurface sediments by the dominant microbial process alone because of their interrelated biogeochemical consequences. To better inform models of microbially-catalyzed subsurface processes, such interactions must be more thoroughly understood under a broad range of conditions.

Funder

Subsurface Biogeochemical Research Program, Office of the Biological and Environmental Research, Office of Science, U.S. Department of Energy (DOE).

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference131 articles.

1. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle;ED Melton;Nature Reviews Microbiology,2014

2. Anaerobic redox cycling of iron by freshwater sediment microorganisms;KA Weber;Environ Microbiol,2006

3. Influence of upwelling saline groundwater on iron and manganese cycling in the Rio Grande floodplain aquifer;MF Kirk;Applied Geochemistry,2009

4. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia;S Fendorf;Science,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3