Abstract
City air quality monitoring (AQM) network are typically sparsely distributed due to high operation costs. It is of the question of how well it can reflect public health risks to air pollution given the diversity and heterogeneity in pollution, and spatial variations in population density. Combing high-resolution air quality model, spatial population distribution and health risk factors, we proposed a population-health based metric for AQM representativeness. This metric was demonstrated in Hong Kong using hourly modelling data of PM10, PM2.5, NO2 and O3 in 2019 with grid cells of 45m * 48m. Individual and total hospital admission risks (%AR) of these pollutants were calculated for each cell, and compared with those calculated at 16 monitoring sites using the similarity frequency (SF) method. AQM Representativeness was evaluated by SF and a population-health based network representation index (PHNI), which is population-weighted SF over the study-domain. The representativeness varies substantially among sites as well as between population- and area-based evaluation methods, reflecting heterogeneity in pollution and population. The current AQM network reflects population health risks well for PM10 (PHNI = 0.87) and PM2.5 (PHNI = 0.82), but is less able to represent risks for NO2 (PHNI = 0.59) and O3 (PHNI = 0.78). Strong seasonal variability in PHNI was found for PM, increasing by >11% during autumn and winter compared to summer due to regional transport. NO2 is better represented in urban than rural, reflecting the heterogeneity of urban traffic pollution. Combined health risk (%ARtotal) is well represented by the current AQM network (PHNI = 1), which is more homogenous due to the dominance and anti-correlation of NO2 and O3 related %AR. The proposed PHNI metric is useful to compare the health risk representativeness of AQM for individual and multiple pollutants and can be used to compare the effectiveness of AQM across cities.
Funder
National Natural Science Foundation of China
HSBC 150th Anniversary Charity Programme
University Grants Committee
Publisher
Public Library of Science (PLoS)
Reference63 articles.
1. Urban Air Pollution and Climate Change as Environmental Risk Factors of Respiratory Allergy: An Update;G D’amato;J Investig Allergol Clin Immunol,2010
2. Urban air pollution and chronic obstructive pulmonary disease: a review Histological background;J. Sunyer;Eur Respir J,2001
3. Urban Air Pollution and Lung Cancer in Stockholm;F Nyberg;Source Epidemiol,2000
4. Environmental cardiology: Studying mechanistic links between pollution and heart disease;A. Bhatnagar;Circulation Research,2006
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献