Development and ex-vivo assessment of a novel patient specific guide and instrumentation system for minimally invasive total shoulder arthroplasty

Author:

Giles Joshua W.ORCID,Brodén Cyrus,Tempelaere Christine,Emery Roger J. H.,Rodriguez y Baena Ferdinando

Abstract

Objective To develop and assess a novel guidance technique and instrumentation system for minimally invasive short-stemmed total shoulder arthroplasty that will help to reduce the complications associated with traditional open replacement such as poor muscle healing and neurovascular injury. We have answered key questions about the developed system including (1) can novel patient-specific guides be accurately registered and used within a minimally invasive environment?; (2) can accuracy similar to traditional techniques be achieved? Methods A novel intra-articular patient-specific guide was developed for use with a new minimally invasive posterior surgical approach that guides bone preparation without requiring muscle resection or joint dislocation. Additionally, a novel set of instruments were developed to enable bone preparation within the minimally invasive environment. The full procedure was evaluated in six cadaveric shoulders, using digitizations to assess accuracy of each step. Results Patient-specific guide registration accuracy in 3D translation was 2.2±1.2mm (RMSE±1 SD; p = 0.007) for the humeral component and 2.7±0.7mm (p<0.001) for the scapula component. Final implantation accuracy was 2.9±3.0mm (p = 0.066) in translation and 5.7–6.8±2.2–4.0° (0.001<p<0.009) across the humerus implants’ three rotations. Similarly, the glenoid component’s implantation accuracy was 3.0±1.7mm (p = 0.008) in translation and 2.3–4.3±2.2–4.4° (0.008<p<0.09) in rotation. Conclusion This system achieves minimally invasive shoulder replacement with accuracy similar to traditional open techniques while avoiding common causes of complications. Significance This novel technique could lead to a paradigm shift in shoulder arthroplasty for patients with moderate arthritis, which could significantly improve rehabilitation and functional outcomes.

Funder

Leverhulme Trust

Wellcome Trust

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3