Demonstration of laser biospeckle method for speedy in vivo evaluation of plant-sound interactions with arugula

Author:

Rajagopalan Uma MaheswariORCID,Wakumoto Ryotaro,Endo Daiki,Hirai Minoru,Kono Takahiro,Gonome Hiroki,Kadono Hirofumi,Yamada Jun

Abstract

In recent years, it is becoming clearer that plant growth and its yield are affected by sound with certain sounds, such as seedling of corn directing itself toward the sound source and its ability to distinguish stuttering of larvae from other sounds. However, methods investigating the effects of sound on plants either take a long time or are destructive. Here, we propose using laser biospeckle, a non-destructive and non-contact technique, to investigate the activities of an arugula plant for sounds of different frequencies, namely, 0 Hz or control, 100 Hz, 1 kHz, 10 kHz, including rock and classical music. Laser biospeckles are generated when scattered light from biological tissues interfere, and the intensities of such speckles change in time, and these changes reflect changes in the scattering structures within the biological tissue. A leaf was illuminated by light from a laser light of wavelength 635 nm, and the biospeckles were recorded as a movie by a CMOS camera for 20 sec at 15 frames per second (fps). The temporal correlation between the frames was characterized by a parameter called biospeckle activity (BA)under the exposure to different sound stimuli of classical and rock music and single-frequency sound stimuli for 1min. There was a clear difference in BA between the control and other frequencies with BA for 100 Hz being closer to control, while at higher frequencies, BA was much lower, indicating a dependence of the activity on the frequency. As BA is related to changes from both the surface as well as from the internal structures of the leaf, LSM (laser scanning microscope) observations conducted to confirm the change in the internal structure revealed more than 5% transient change in stomatal size following exposure to one minute to high frequency sound of 10kHz that reverted within ten minutes. Our results demonstrate the potential of laser biospeckle to speedily monitor in vivo response of plants to sound stimuli and thus could be a possible screening tool for selecting appropriate frequency sounds to enhance or delay the activity of plants. (337 words)

Funder

Japan Society for the Promotion of Science

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3