Lyapunov function and global asymptotic stability for a new multiscale viral dynamics model incorporating the immune system response: Implemented upon HCV

Author:

Elkaranshawy Hesham A.ORCID,Ezzat Hossam M.ORCID,Ibrahim Nermeen N.

Abstract

In this paper, a new mathematical model is formulated that describes the interaction between uninfected cells, infected cells, viruses, intracellular viral RNA, Cytotoxic T-lymphocytes (CTLs), and antibodies. Hence, the model contains certain biological relations that are thought to be key factors driving this interaction which allow us to obtain precise logical conclusions. Therefore, it improves our perception, that would otherwise not be possible, to comprehend the pathogenesis, to interpret clinical data, to control treatment, and to suggest new relations. This model can be used to study viral dynamics in patients for a wide range of infectious diseases like HIV, HPV, HBV, HCV, and Covid-19. Though, analysis of a new multiscale HCV model incorporating the immune system response is considered in detail, the analysis and results can be applied for all other viruses. The model utilizes a transformed multiscale model in the form of ordinary differential equations (ODE) and incorporates into it the interaction of the immune system. The role of CTLs and the role of antibody responses are investigated. The positivity of the solutions is proven, the basic reproduction number is obtained, and the equilibrium points are specified. The stability at the equilibrium points is analyzed based on the Lyapunov invariance principle. By using appropriate Lyapunov functions, the uninfected equilibrium point is proven to be globally asymptotically stable when the reproduction number is less than one and unstable otherwise. Global stability of the infected equilibrium points is considered, and it has been found that each equilibrium point has a specific domain of stability. Stability regions could be overlapped and a bistable equilibria could be found, which means the coexistence of two stable equilibrium points. Hence, the solution converges to one of them depending on the initial conditions.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3