Acceleration of shooting and bouncing ray method based on OptiX and normal vectors correction

Author:

Xu GaoguiORCID,Dong Chunzhu,Zhao Tao,Yin Hongcheng,Chen Xuan

Abstract

The present paper deals with a new efficient shooting and bouncing ray (SBR) method based on OptiX and normal vectors correction. The basic idea is to make full use of the computing resources of the RTX series graphics cards. For ray tracing, the algorithm uses OptiX to invoke the built-in RT Cores of hardware. Thus, a fast intersection test can be implemented. To reduce the error of ray tracing caused by the facetted surface characterizing the curved surface, the direction of the reflected ray is corrected by normal vectors correction. Additionally, multiple GPU cores are invoked to accelerate the calculation of far-field integration of millions of ray tubes, which can improve the efficiency of the algorithm while reducing the data transmission time of heterogeneous devices. Simulation results show that the ray path after normal vectors correction is consistent with the theoretical results, and the algorithm can predict the RCS of arbitrary facetted geometries, which is 60 times faster than the SBR method based on kd-tree.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference30 articles.

1. Computational electromagnetic simulation of smart antenna systems in urban microcellular environments;KR Dandekar;IEEE Transactions on Vehicular Technology,2003

2. Computational electromagnetic modelling of compact antenna test range quiet zone probing;CG Parini;Applied Computational Electromagnetics Society Journal,2018

3. An invisible medium for circularly polarized electromagnetic waves;Y Tamayama;Optics express,2008

4. A Progression of High-Frequency RCS Prediction Techniques;EF Knott;Proceedings of the IEEE,1985

5. Radar cross section (RCS) modeling and simulation, part 1: a tutorial review of definitions, strategies, and canonical examples;C Uluisik;IEEE Antennas and Propagation Magazine,2008

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3