Two species, one island: Retrospective analysis of threatened fauna translocations with divergent outcomes

Author:

Rayner KellyORCID,Lohr Cheryl A.ORCID,Garretson Sean,Speldewinde PeterORCID

Abstract

Translocations are globally a popular tool used with the intention of improving threatened species conservation and re-establishing ecosystem function. While practitioners strive for successful outcomes the failure rate of translocations continues to be high. We demonstrate how predictive modelling can contribute to more informed decision making and hence potentially improve the success rate of translocation programs. Two species, the Djoongari (Shark Bay mouse) Pseudomys fieldi and the golden bandicoot Isoodon auratus barrowensis, were introduced independently to Doole Island in the Exmouth Gulf of Western Australia. We used population viability analysis to critique the outcomes of these translocations and provide an example of how this tool can be incorporated with expert knowledge to predict likely outcomes of translocations. Djoongari did not establish on the island after seven translocations over nine years, while golden bandicoots established a population after just one release event. Retrospective population viability analysis (of data that was unavailable prior to the translocations) predicted and clarified the reasons behind the outcomes of both translocations. Golden bandicoots have considerably higher demographic plasticity than Djoongari, which were never likely to establish on the island. We conclude that the failure of the Djoongari translocation was due to interactions between sparse habitat, native predators and cyclonic storm surges, whereas golden bandicoots have demonstrated habitat flexibility and an ability to recover from multiple natural disasters. As a result we (1) remind conservation planners of the importance of quantifying likely refuges and habitat availability at release sites, (2) suggest practitioners consider how different threats (including natural disasters) may interact at potential release sites and (3) advocate for the incorporation of predictive modelling during the planning stages of translocations, particularly for conservation introductions where no precedent exists for the species’ survival at a particular location.

Funder

Natural Heritage Trust Endangered species program

Department of Biodiversity, Conservation and Attractions

Shark Bay mouse recovery plan

Perth Zoological gardens

Chevron Australia

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3