Simple discrete-time self-exciting models can describe complex dynamic processes: A case study of COVID-19

Author:

Browning RaihaORCID,Sulem Deborah,Mengersen Kerrie,Rivoirard Vincent,Rousseau Judith

Abstract

Hawkes processes are a form of self-exciting process that has been used in numerous applications, including neuroscience, seismology, and terrorism. While these self-exciting processes have a simple formulation, they can model incredibly complex phenomena. Traditionally Hawkes processes are a continuous-time process, however we enable these models to be applied to a wider range of problems by considering a discrete-time variant of Hawkes processes. We illustrate this through the novel coronavirus disease (COVID-19) as a substantive case study. While alternative models, such as compartmental and growth curve models, have been widely applied to the COVID-19 epidemic, the use of discrete-time Hawkes processes allows us to gain alternative insights. This paper evaluates the capability of discrete-time Hawkes processes by modelling daily mortality counts as distinct phases in the COVID-19 outbreak. We first consider the initial stage of exponential growth and the subsequent decline as preventative measures become effective. We then explore subsequent phases with more recent data. Various countries that have been adversely affected by the epidemic are considered, namely, Brazil, China, France, Germany, India, Italy, Spain, Sweden, the United Kingdom and the United States. These countries are all unique concerning the spread of the virus and their corresponding response measures. However, we find that this simple model is useful in accurately capturing the dynamics of the process, despite hidden interactions that are not directly modelled due to their complexity, and differences both within and between countries. The utility of this model is not confined to the current COVID-19 epidemic, rather this model could explain many other complex phenomena. It is of interest to have simple models that adequately describe these complex processes with unknown dynamics. As models become more complex, a simpler representation of the process can be desirable for the sake of parsimony.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference68 articles.

1. World Health Organisation. Weekly Epidemiological Update for Coronavirus disease 2019 (COVID-19)—9 March 2021; 2021. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20210309_weekly_epi_update_30.pdf.

2. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts;J Hellewell;The Lancet Global Health,2020

3. A stochastic model for COVID-19 spread and the effects of Alert Level 4 in Aotearoa New Zealand;MJ Plank;medRxiv,2020

4. The effect of stay-at-home orders on COVID-19 cases and fatalities in the United States;JH Fowler;medRxiv,2020

5. Individual quarantine versus active monitoring of contacts for the mitigation of COVID-19: a modelling study;CM Peak;The Lancet Infectious Diseases,2020

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3