Development of a constant pressure perfused ex vivo model of the equine larynx

Author:

Otto Sven,Michler Jule K.ORCID,Dhein Stefan,Mülling Christoph K. W.

Abstract

Distal axonopathy is seen in a broad range of species including equine patients. In horses, this degenerative disorder of the recurrent laryngeal nerve is described as recurrent laryngeal neuropathy (RLN). The dysfunctional innervation of the cricoarytenoideus dorsalis muscle (CAD) leads to a loss of performance in affected horses. In general, ex vivo models of the larynx are rare and for equine patients, just one short report is available. To allow for testing new therapy approaches in an isolated organ model, we examined equine larynges in a constant pressure perfused setup. In order to check the vitality and functionality of the isolated larynx, the vessels´ reaction to norepinephrine (NE) and sodium nitroprusside (NP) as vasoactive agents was tested. Additionally, the contractility of the CAD was checked via electrical stimulation. To determine the extent of hypoxic alterations, lactate dehydrogenase (LDH) and lactate were measured and an immunofluorescent analysis of hypoxia-inducible factor (HIF-1α), a key transcription factor in hypoxia, was performed. For this, a hypoxia-induced cell culture for HIF-1α was developed. The application of NE led to an expected vasoconstriction while NP caused the expected vasodilation. During a perfusion period of 352 ±20.78 min, LDH values were in the reference range and lactate values slightly exceeded the reference range at the end of the perfusion. HIF-1α nuclear translocation could reliably be detected in the hypoxia-induced cell cultures, but not in sections of the perfused CAD. With the approach presented here, a solid basis for perfusing equine larynges was established and may serve as a tool for further investigations of equine larynx disorders as well as a transferrable model for other species.

Funder

Med-EL

Leipzig University for Open Access Publishing

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3